メタルゲート/high-k 極薄膜の熱的安定性に対する 蛍光 XAFS 法による評価 Fluorescence XAFS analysis of thermal stability for metal gate and high-k gate dielectrics

<u>尾嶋 正治</u>^{a,b,c}, 大渕 博宣^d, 鎌田 洋之^a, 豊田 智史^{a,b,c}, 組頭 広志^{a,b,c}, 助川 孝江^e, 岩本 邦彦^e,

劉 紫園^e

Masaharu Oshima^{a,b,c}, Hironori Ofuchi^d, Hiroyuki Kamada^a, Satoshi Toyoda^{a,b,c}, Hiroshi Kumigashira^{a,b,c},

Takae Sukegawa^e, Kunihiko Iwamoto^e, Ziyuan Liu^e

^a東大院工,^b東大放射光機構,^cJST-CREST, ^dJASRI/SPring-8, ^eSTARC

^aThe Univ. of Tokyo, ^bUT-SRRO, ^cJST-CREST, ^dJASRI/SPring-8, ^eSTARC

メタルゲート/high-k 薄膜である TiN/HfSiON/SiON/Si のアニール温度依存性について議論するため に、Hf L_{III}、Hf L_I吸収端での XAFS 測定を行い、アニール温度の違いに対する局所構造の変化を調べ た。測定の結果、アニール温度 850℃と 1050℃を境にして Hf L_I吸収端の XANES スペクトルに違い が観測され、基本的に HfSiON を形成している、という結果が得られた。

キーワード: High-k、メタルゲート、HfSiON、TiN、XAFS

背景と研究目的:

通常 LSI-CMOS プロセスでは、不純物活性化のために 1000℃以上の高温アニーリングが必要不可 欠である。しかしながら高温下では、high-k 絶縁膜 HfO₂ と Si との反応により SiOx や HfSi₂ などシリ サイドの形成や、アモルファス HfO₂ 層の結晶化のため、リーク電流が増大するという業界共通の課 題が実用化への大きな障害となっている。この問題に対し、HfSiO の窒化処理による HfSiON 膜の形 成という手法が開発され、これにより電気的特性(電子トラップ密度)が改善されることが明らかとな った。しかしながら、シリサイド形成や結晶化などの問題は完全には解決されていない。

また、ゲート絶縁膜を HfSiON に置き換えたことで、従来のポリシリコン(poly-Si)でできたゲート 電極と組み合わせて使用した場合、(1)poly-Si/HfSiON 界面で不具合が発生しやすく動作電圧が上昇す る、(2)内部でフォノン振動が発生し電子の流れを阻害するといった問題も生じている。この問題に対 し、ゲート電極に金属を用いたメタルゲートを用いることでフォノン振動が緩和されることが報告さ れている。しかしながら、高温アニーリングを行う際、(1)メタルゲートと HfSiON との反応でメタル シリサイドが形成される、(2)Si 基板側に拡散したメタル不純物が欠陥順位を作り、少数キャリア生成、 リークの原因となる、といった新たな問題が生じている。このような業界共通の課題が実用化への大 きな障害となっており、このため作製条件の最適化が急務となっている。

今回の実験ではメタルゲート電極として TiN を堆積させた TiN/HfSiON/SiON 極薄膜に対して Hf LIII 及び Hf L₁吸収端での蛍光 XAFS 測定を行った。メタルゲートとして TiN を用いる利点として、 (1) フラットバンド条件では Si のミッドギャップ付近にフェルミエネルギーが位置するため、pMOS 用、nMOS 用として共に仕事関数が制御しやすい、

(2) 貴金属である Ru に比べて安価、

ことが挙げられる。しかしながら、高温でのアニールによりリーク電流が増加するといった報告がされている[1]。リーク電流の増加の原因として TiN/HfSiON 界面での TiO2の形成、HfSiON/Si 界面での SiO2の増加などが提唱されているものの、直接的な原因は十分に理解されていない。本課題で対象と する試料の結晶構造評価を行うことは、リーク電流の増加の原因を明らかにし、作製条件を最適化す る上で非常に有用である。

実験方法:

(1) XAFS 測定条件 使用ビームライン: BL14B2 分光器結晶: Si(111) ミラー角度: 3.5 mrad 測定方法: 蛍光法、透過法 検出器: 19 素子ゲルマニウム半導体検出器 測定吸収端: Hf L_{III} 9.22~10.30 keV、Hf L_I 11.2~11.40 keV ステップ幅: 0.0005~0.005deg. 積算時間: Hf L_{III} 1 点あたり 20~80 秒、Hf L_I 1 点あたり 20 秒 測定温度:室温 エネルギー校正: Cu-foil スペクトルで、エッジジャンプの中点を 12.7185deg.とした。
(2) 測定試料

今回測定した試料は Si(001)基板上に原子層堆積法により絶縁膜を堆積させ、HfSiON/Si 薄膜を作製 した。この試料に反応性スパッタで TiN を 1.5nm 堆積させ、N2雰囲気(O2 0.2ppm)下でアニール処理 を行った。今回測定した HfSiON 試料の作製条件を表1に示す。蛍光法にて測定した。また、標準試 料として BN で希釈しペレット状にした HfO2粉末試料を透過法にて測定した。

表1. 今回測定した HfSiON 試料の作製条件

試料	試料構造	アニール条件			
#A	HfSiON(2nm)/SiON/Si(001)	-			
#B	TiN(1.5nm)/HfSiON(2nm)/SiON/Si(001)	1050° C in N ₂			
#C		850°C in N ₂			
#D		650° C in N ₂			

結果及び考察:

各試料の Hf L_{III} 吸収端での規格化 EXAFS 及び動径分布をそれぞれ図 1、2 に示す。各試料のスペクトルを比較すると、アニール温度の違いに対しスペクトル形状に大きな変化は見られず、HfO₂のスペクトルとほぼ同じである。このため、これらの試料は HfO₂ と同様、Hf の周囲に O が配位した構造を形成していると考えられる。カーブフィッティングにより得られた各パラメータを表 2 に示す。カーブフィッティングの結果、アニール温度が低くなるにつれて Hf-O 原子間距離は短くなることが分かった。また、配位数はいずれの試料も 6-7 であり、アニール温度の変化に対する有意な違いは見られなった。

())	一友199100	1.1.04 ~ 2.2/A)		
試芝	結合種	原子間距離	配位数	Debye-Waller
		r (Å)	Ν	因子 σ(Å)
#A	Hf-O	2.14	6.3	0.117
#B	Hf-O	2.13	6.2	0.108
#C	Hf-O	2.12	6.8	0.117
#D	Hf-O	2.11	5.9	0.117
HfO ₂	Hf-O	2.15	7	0.100

表 2. カーブフィッティング結果(Hf Lm-edge) (フーリェ変換範囲・30~00^{k-1} 道フーリェ変換範囲・104~227^k)

各試料の Hf L_I吸収端での XANES スペクトルを図 3 に示す。アニール温度 1050℃の試料(#B)はア ニール前の試料(#A)とほぼ同じであることが分かる。これに対し、アニール温度 850℃以下の試料 (#C,#D)のスペクトルは 11290eV 付近のピーク強度が試料#A.B に比べて減少している。

今回の実験から、(1)アニール温度が低くなるにつれて Hf-O 原子間距離が短くなる、(2)アニール温 度 850℃以下では Hf L₁吸収端 XANES スペクトルの 11290eV 付近のピーク強度が小さくなる、という 結果が得られた。これまでの実験から、(1) HfO2 のシリケート化、(2)Hf シリケートの窒化、により Hf-O 原子間距離が HfO2 の Hf-O 原子間距離より短くなるという結果が得られている[2,3,4]。しかし ながら、図4に示すようにN組成20%の範囲まではN組成の増加に対してHfLi吸収端XANESスペ クトル形状の違いは観察されないという結果が得られている[4]。また、HfO2 のシリケート化に対し てはピーク強度の減少は観測されるものの、今回の結果ほどの強度減少は観測されていない。Si 組成 の増加に対しピーク強度がさらに減少する可能性は否定できないものの、今回のアニール温度の変化 に対する解析結果の違いはHfSiON層中のSiやN組成の変化に起因するものではない可能性がある。 このため、今後 XANES スペクトルの Si 組成依存性についても検証を行う必要がある。

(Hf L_I-edge、アニール温度依存性)

(Hf L_I-edge、窒素組成依存性)

今後の課題:

今回の実験では、HfL吸収端に加え、TiK吸収端での測定も予定していたが、X線強度が弱く、TiN 層からの Ti Kα線を検出することができなかった。アニール時の TiN/HfSiON 界面反応のメカニズム を理解する上で Ti K 吸収端での測定は重要であることから、ミラー集光等、光学系の改良による低 エネルギー領域でのX線強度の増強が必要である。

参考文献:

- [1] H. Watanabe et al., Jpn. J. Appl. Phys. 45 (2006) 2933.
- [2] 尾嶋正治、平成 19 年度重点産業利用報告書 2007A1922.
- [3] 尾嶋正治、平成 19 年度重点産業利用報告書 2007B1939.
- [4] H. Ofuchi et al., J. Phys.: Conf. Ser. 190 (2009) 012116.