第一段高圧タービンブレードとして実機使用した 単結晶 Ni 基超合金の損傷評価 Evaluation of Damage of Single Crystal Nickel-based Superalloy Serviced as First Stage High Pressure Turbine Blade

<u>近藤 義宏</u>^a, 三浦 信祐^a, 村田 純教^b, 菖蒲 敬久^c, 石山 新太郎^c <u>Yoshihiro Kondo^a</u>, Nobuhiro Miura^a, Yoshinori Murata^b, Takahisa Shobu^c, Shintaro Ishiyama^c

> ^a防衛大学校,^b名古屋大学,^c(独) 日本原子力研究開発機構 ^aNational Defense Academy, ^bNagoya University,^c JAEA

実機使用した単結晶 Ni 基超合金の第一段高圧タービンブレードについて、単色 X 線を用い、 ひずみスキャンニング法によりブレードの表面から内部に至る γ、γ'-400 基本反射および γ'-300 超格子反射を計測し、γ 相、γ'相の格子定数を求め、試料内部のひずみを算出した。その結果、表 面に対し垂直方向の引張ひずみが発生し、フックの法則から推察した面内方向の応力はブレード の表面から内部に至る範囲で、表面に平行な多軸の圧縮応力が残留しているものと考えられる。

キーワード: Ni 基超合金、タービンブレード、γ'相、ラフト、内部ひずみ

背景と研究目的:

近年、航空機の高性能化および地球環境への負荷低減要求に伴い、ジェットエンジンのさらな る高出力、高効率化が求められている。ジェットエンジンの効率はタービン入口温度(TIT: Turbine Inlet Temperature)に強く依存し、高温ほど高効率となる。最新のエンジンでは、TIT が Ni 基超合 金の融点を上回る1500℃のものも実用化されており、今後もTIT は上昇しつづけると考えられる。

ところで、TIT の上昇に直接、影響するのは、燃焼器、高圧タービンブレードおよびノズルで あり、これらに用いられている Ni 基超合金の耐用温度向上が不可欠となる。なかでも、温度、応 力の両面から最も過酷な条件に曝されるタービンブレードは、ブレード先端部で高温低応力、ブ レード付根部では低温高応力であるといわれている。しかし、稼働中のブレードは高温下で高速 回転しており、温度、応力を実測することは困難で、その詳細は未だ不明である。これらを解明 することは、ブレードの設計および合金開発を行う上で不可欠である。さらに、安全性および経 済性の観点からもブレードの稼働温度、応力の推定および寿命推定技術の確立が急務となっている。

一方、Ni 基超合金の強化相である立方体状の γ'(Ni₃(Al, Ti))相のごとく Ni の金属間化合物 (以下、γ'相)は高温下で[001]の引張クリープ変形を受けると、応力軸に対し垂直方向に連結し て、ラフト構造と呼ばれる層状かつ板状組織を形成することが良く知られている。著者らはこの ラフト構造がクリープ抵抗を低下させ、この形成時期は温度、応力条件に強く依存することを明 らかにしている[1,2]。近年、この γ'相の形態変化に関する知見に基づいたブレードの使用環境を 推定する研究が行われている。著者らは実機使用した単結晶 Ni 基超合金の第一段高圧タービンブ レードについて、詳細な SEM 観察を行った結果、γ'相の形態は部位により大きく異なることを示 し、これまでに得られたクリープ破断および中断材の γ 相の形態と比較して、稼働中の温度、応 力分布を定性的に推定し、実機稼働環境把握が可能であると報告した[3]。しかし、1) γ'相の形態 のみからの推測であり、温度、応力の二つの因子を定量的に求めることは困難である。2) γ'相の形 のタービンブレードからは TEM 用試料の採取および部位の特定は困難で、転位密度を含めた転位 下部組織の観察は不可能である。4) 非破壊試験でないため、ブレードの再利用が困難である。した がって、温度、応力に強く依存すると考えられる転位下部組織等の組織因子を求める必要がある。

本研究では、TBC タービンブレード表面から TBC コーティング層下の母材の γ'相および γ 相の 面外方向ひずみ分布を測定し、その有効性を明らかにする。

実験方法:

供試材には ZrO_2 遮熱コーティングを施した 単結晶 Ni 基超合金の第一段高圧タービンブレ ードを用いた。実験は SPring-8 の BL19B2 で、 71.00keV のエネルギーを有する単色 X 線で行 った。ダブルスリットによるひずみスキャン ニング法によりタービンブレードの表面から 内部に至る γ 、 γ '-400 基本反射および γ '-300 超格子反射を計測した。スリットサイズは 0.15 ×3.0mm とし、検出器には CdTe 検出器を用い た。図 1 に実験方法の模式図を示す。試料内 部のひずみ ϵ は以下の式を用いて算出した。

$$\varepsilon = \frac{d - d_0}{d_0} \tag{1}$$

ただし、d は使用材の面間隔、d₀は未使用材

図1.実験方法の模式図

の面間隔であり、本試験片にはコーティングを施していない単結晶 Ni 基超合金に対して、焼鈍処 理により残留応力をほぼ除荷したものを使用した。また、格子定数 a に関しては、以下の式を用 いて算出した。

$$a = d\sqrt{h^2 + k^2 + l^2} = \frac{\lambda}{2\sin\theta}\sqrt{h^2 + k^2 + l^2} = \frac{1.2398}{2E\sin\theta}\sqrt{h^2 + k^2 + l^2}$$
(2)

ここで、h、k、1 は回折面指数、 λ は X 線の波長、2 θ は回折角、E は X 線のエネルギーである。

結果および考察:

図2に表面にコーティングを施していない単結晶 Ni 基超合金の表面から 100 μ m の深さで測定 した 400 および 300 反射のプロファイルを示す。基本的には γ 相と γ '相は fcc 構造を持つが、fcc 構造の (1/2 1/2 1/2) サイトに Al ないし Ti が存在するために γ '相は超格子構造を持つため、400 反射には γ -400 反射と γ '-400 反射の 2 種類が、また、300 反射には γ '-300 反射のみ存在すること になる。これを考慮し、図2 (a) では 2 つのガウスプロファイル、(b) では 1 つのガウスプロフ ァイルでフィッティングを行い、格子定数を算出した結果、(a) の強度の高い反射では a = 0.3591 nm、弱い反射では a = 0.3586 nm、そして (b) では 0.3591 nm が得られた。よって 400 反射では強 度の高い方が γ '-400 反射、強度の低い方が γ -400 反射であることが分かった。しかしながら、一 般的には γ 相に比べ γ '相の格子定数は小さいと報告されており、これは本結果と一致しないこと から、本結果の妥当性に関しては改めて検討する必要がある。

図3に焼鈍処理した単結晶 Ni 基超合金の表面から深さ方向における、400 反射から求めたγ相 およびγ'相の格子定数と300 反射から求めたγ'相の格子定数の変化、および図2(a)に示すγ' 相とγ相を表す2つのガウスプロファイルの積分強度(面積)より算出した回折強度比の変化を 示す。格子定数に関して、表面近傍ではひずみスキャンニング法の光学系に起因する表面効果に

より単調に減少し、その影響が180µm まであることを確認した。一方、γ相およびγ'相の存在比 に関しては、γ相が0.3 に対してγ'相が0.7 と報告されているが、X線の強度比は0.1:0.9 と若干 異なっている。強度比が報告されているものと異なる原因としては、単結晶Ni基超合金は完全な 単結晶ではなく結晶方位がそろった多結晶体であり、その方位差が放射光の発散よりも大きく、 いわゆる図2のようなプロファイルを得るときにγ'相に偏った成分を測定したためであると思わ れる。このあたりも今回のような試験片を計測する場合の課題である。

図 3. 焼鈍処理した単結晶 Ni 基超合金の表面から深さ方向における γ 相および γ'相の 格子定数(a) および強度比(b)の変化

図4に実機使用材および未使用材の表面から深さ方向におけるγ相およびγ相の格子定数と強度の変化を示す。図4(a)においては表面にコーティングが施されており、単結晶Ni基超合金の表面からの深さは直接確認することができない。そこで、本研究では回折強度の変化に注目し、前述の深さを推察した。つまり、図4(b)の未使用材の強度変化に注目すると、深さ0.05mmが最も強く、表面はその強度の約90%に相当する。これはゲージ体積が試料に完全に埋まる時が最も強度が強く、それより深い領域では材料の吸収により強度が減少するためである。表面をコーティングした図4(a)の結果に前述の結果を適用すると、γ相では300µmまでに2段階の強度増加が発生しているが、200µmより深いところでは材料の形状の影響でX線の材料中を通過する長さが短くなるために強度が増加していると考えら得るため、160µmまでの単調増加が図4(b)の

増加に相当すると思われる。したがって、実機使用材の表面から 120μm のところが単結晶 Ni 基 超合金の表面であると判断でき、この値は SEM 観察から求めた値とほぼ一致している。

γ相および γ'相の格子定数と強度の変化

以上から、実機使用材および未使用材の面間隔 $d \ge d_0 \ge 0$ 差より実機使用材のひずみ量を算出した。

図5に実機使用材のγ'相における表面に対し垂直方向のひずみの深さ分布を示す。図1に示す ように、本測定ではひずみスキャンニング法を反射法で適用している。そのため、本測定で得ら れる格子面間隔、そしてそこから求められるひずみは、表面に対して垂直方向、つまり深さ方向 (z方向)となる。全体として表面に対し垂直方向の引張ひずみが発生している。特に、0.15mm の深さでさらに引張ひずみが大きくなっているように見える。一方、深さ0.3mmのところで1点

図 5. 実機使用材の γ'相における表面に対し垂直方向のひずみの深さ分布

であるが引張ひずみが減少している。この結果は著者らが γ'相の形態変化から求めた引張応力の 方向とよく対応していることから、本結果は妥当であると判断でき、より深いところの情報を本 測定で得ることが今後の課題である[3]。また、単結晶 Ni 基超合金の 1000℃における弾性係数[4] から深さ方向の引張応力を強引に概算すると約 100MPa となり、表面近傍で γ'相がラフト構造[2] を形成していることから、これまでのクリープ中断材の組織観察結果と比較すると、この値はあ る程度、妥当であると考えられる。さらに、本実験結果よりフックの法則から推察した面内方向 の応力は、ポアソン比分だけ反作用的な応力が発生すると考えられることから、実機使用したタ ービンブレードの表面から内部に至る範囲で圧縮応力が残留していると推察できる。これはコー ティング層と母相の熱膨張係数の差および、あるいは母相内の表面近傍と内部冷却孔付近の温度 差による熱応力が生じたことに起因すると考えられる。

今後の課題:

- 本実験のようにγ相に比ベγ'相の格子定数が大きいとした研究[4]も報告されているが、一般 的にはγ相に比ベγ'相の格子定数が小さいと報告されており、図2に示した X線プロファイル 分離の確立と各相の同定が不可欠である。
- 本実験はタービンブレードにおける一部の部位について深さ方向のひずみ等の変化を測定したものであるが、部位により、応力分布が異なることも考えられ、種々の部位での検討が必要である。事実、γ'相の形態変化から求めた著者らの温度、応力分布は部位により異なっており、他の部位における検討は不可欠である。
- 3) X線プロファイルを含め、得られたデータが転位下部組織を含めた組織因子とどのような対応をしているかを検討するため、より多くの知見が必要である。
- 4) 放射光 X 線強度が不足していたため、図 5 で示したように、0.3mm より内部冷却孔付近ま でのより深いところでの知見も今のところ解明されていない。

参考文献:

- [1] Y. Kondo, N. Kitazaki, J. Namekata, N. Ohi, H. Hattori, Proc. of the 8th Int. Conf. on Superalloys 1996, p.297 (1996)
- [2] 三浦信祐, 近藤義宏, 松尾 孝, 鉄と鋼, 89, p.1240 (2003)
- [3] N. Miura, N. Harada, Y. Kondo, T. Matsuo, Proc. of the δth Int. Conf. on Mater. for Adv. Power Eng., p.245 (2002)
- [4] D. Dye, K.T. Conlon, P.D. Lee, R.B. Rogge, R.C. Reed, Proc. of the 10th Int. Conf. on Superalloys 2004, p.485 (2004)
- [5] F. Pyczak, B. Devrient, H. Mughrabi, Proc. of the 10th Int. Conf. on Superalloys 2004, p.827 (2004)