硬 X 線光電子分光法によるリチウム電池電極表面・内部の 電子状態の解析

Surface and bulk characterization of lithium battery electrodes by Hard X-ray Photoemission Spectroscopy

<u>菅野 了次</u>^a, 平山 雅章^a, 鈴木 耕太^a, 田港 聡^a, Kim SangRyun^a, 孫 珍永^b Ryoji Kanno^a, Masaaki Hirayama^a, Kota Suzuki^a, Sou Taminato^a, SangRyun Kim^a, Jin-Young Son^b

> ^a東京工業大学,^b(財)高輝度光科学研究センター ^aTokyo Tech,^b JASRI

リチウム電池の性能向上のために、電池特性に深く関与する正極材料表面の電子状態を調べた. エピタキシャル LiMn₂O₄薄膜電極を固体電解質 Li_{0.5}La_{0.5}TiO₃ で表面修飾して、BL46XU で硬 X 線 光電子分光測定を行い、電気化学反応による変化を検討した.光電子分光器の薄膜に対する角度 を変化させて、電極最表面と内部を分離して検出した.Li_{0.5}La_{0.5}TiO₃ を修飾した場合、未修飾、 Li₃PO₄修飾したLiMn₂O₄と比べてMnの平均価数がより高くなることを確認した.また、Li_{0.5}La_{0.5}TiO₃ によって充放電サイクル中のMn 溶出が抑制されることを明らかにした.更に、修飾材料の種類 や修飾方法によって電極劣化の抑制に対する影響が異なることが示唆された.

キーワード: リチウム電池,硬X線光電子分光法(HAXPES),界面構造,エピタキシャル薄膜

背景と研究目的:

リチウム電池の出力特性,寿命および安全性の向上を実現の鍵は,電気化学界面における電極 反応機構の解明である.我々はエピタキシャル薄膜で構築したモデル界面で反応を単純化し,放 射光 X 線表面解析により界面構造変化を直接観測することで反応解析を進めてきた[1-3].その結 果,表面反射率・表面回折測定(BL14B1 で実施)から,電池反応中,電極表面は電極内部とは全く 異なり,原子配列の大きな変化や相転移が起きていること,表面構造で電極安定性が変化するこ とを明らかにした.詳細な機構解析のためには,電池電極表面の価数変化,結合状態を調べる必要 がある.非破壊で深さ分解可能な手法として HAXPES 法に着目し,2010B,2011A 期において LiMn₂O₄(LMO)モデル電極ついて表面が内部とは異なる電子状態を有し,電池反応中に Mn が溶出する こと,表面にLi₃PO₄(LPO)を修飾することで溶出を抑制し,サイクル中の電極安定性が向上することを 明らかにした.修飾効果発現のメカニズムを明らかにし,修飾材料の種類による影響を検討するため に,固体電解質 Li_{0.5}La_{0.5}TiO₃(LLTO)修飾を行った LMO の製膜状態,電気化学 10 サイクル後 3.0 V で保持した場合について HAXPES 測定で電極表面の電子構造を解析した.

実験:

0.5% Nb:SrTiO₃(111)単結晶基板上にパルスレーザー堆積法で集電体として SrRuO₃(111)膜, さら にその上に LMO(111)膜を 650°C 酸素圧 6.6 Pa で蒸着させた. 同様に LLTO を 800°C 酸素圧 13.3 Pa で表面修飾したモデル電極を作製した. 薄膜の配向は X 線回折法で確認した. X 線反射率法で見 積もった膜厚は LMO 膜が約 30 nm, LLTO 膜が 3 nm であった. 作製した薄膜を正極, Li を負極 とし,電解液に 1M-LiPF₆を含む EC-DEC(3:7)を用いて電池を構成した. サイクリックボルタンメ トリー(CV)測定を 3.0-4.5 V の範囲で 10 サイクル行い, 3.0 V で電位を保持し電流値が十分減衰し た後,電池を分解洗浄して充電状態の試料とした. また,未修飾の電極,室温で LPO を修飾した 電極も同様の手順で反応後の試料を用意した(2010B). BL46XU において Mn 2 $p_{3/2}$ の HAXPES 測定 を行い,薄膜表面と分光器のなす角度(TOA)を変化させることで,最表面(界面)および内部の光電 子を検出した.入射 X 線を 7940 eV,電極内部は TOA=80°,表面は TOA=8°(修飾膜の場合は TOA=15, 30°)として測定を行った. Au 4 $f_{7/2}$ の結合エネルギーを 84 eV として校正を行い,光電子エネルギ ーを結合エネルギーに変換した. 解析にはソフトウエア CasaXPS を用いた.

結果および考察:

CV 測定では修飾の有無によらず酸化還元ピークが観測されたことから,次に示すリチウム脱挿 入反応の進行を確認した.

 $LiMn_2O_4 = Li_{1-x}Mn_2O_4 + xLi^+ + xe^-$

(1)

図1に電極表面における製膜状態(Dry),電気化学反応後(CV)の Mn 2p3/2 スペクトルを示す.得ら れたスペクトルに対して4本のピーク(Mn⁴⁺, Mn³⁺, Mn²⁺, イオン結合性 Mn)を仮定して解析を行っ た. LLTO 修飾電極では、未修飾および LPO 修飾電極に比べて Mn²⁺ピーク強度が小さく、より高 結合エネルギー側に観測された. LLTO 修飾時に高酸素圧下にさらされたことで、LMO 電極中の Mn²⁺が酸化されたと考えられる.LMO 電極の劣化反応は Mn³⁺の不均化で生成した Mn²⁺が電極中 に溶出することで進行する. 充放電反応中に電解液の分解生成物が皮膜として LMO 表面に形成 され, 溶出した Mn²⁺の一部は電解液成分と結合し, 皮膜内に存在すると考えられる. これより CV 反応前後でイオン結合性 Mn 成分の変化を比較することで劣化抑制効果を検討することが可能 である.図1よりLLTO, LPO 修飾膜ではイオン結合性 Mn に対応するピークは CV 後に強度が減 少したが、未修飾電極では強度が増大した.図2にF1sスペクトルを示す. MnF2に帰属されるピ ークが観測され, 溶出 Mn²⁺は表面皮膜中に F と結合していることが分かった. ピーク強度は未未 修飾膜>>LLTO 修飾膜>LPO 修飾膜の順であった.以上より、表面修飾により電極表面で構造が安 定化し、Mn 溶出の進行が抑制することを確認した. LLTO 修飾と LPO 修飾電極で XPS スペクト ルを比較すると,(1) LLTO では Mn³⁺/Mn⁴⁺比が LPO より小さく,LMO 表面は異なる電子状態を 有する.(2) LLTO 修飾膜では表面比較成分が主に LiF であるが, LPO 修飾膜では LixPOvFz であり, 修飾種により表面皮膜成分が異なる. (3) LLTO 修飾膜ではわずかに MnF2 が観測されたが、LPO

今後の課題:

本課題では充放電反応前後の表面電子状態から劣化反応解析を行った.充電状態(電極電位) は Mn の価数や電子状態と強い相関があるため電極界面でのポテンシャル勾配に影響を与えると 考えられる.今後,充電状態依存性を調べ,劣化抑制効果が発現する機構を明らかにする.加え て,修飾材料種,修飾手法を検討することで,電極界面構造を最適化し,高機能リチウム電池電 極材料の開発指針を見出す.

参考文献:

- M. Hirayama, N. Sonoyama, M. Ito, M. Minoura, D. Mori, A. Yamada, K. Tamura, J. Mizuki, and R. Kanno, *J. electrochem. Soc.*, **154**, 11, A1065(2007).
- [2] K. Sakamoto, M. Hirayama, N. Sonoyama, A. Yamada, K. Tamura, J. Mizuki, R. Kanno, *Chem. Mater.*, 21, 2632(2009).
- [3] M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki and R. Kanno, J. Am. Chem. Soc., 132, 15268 (2010).