2012B1372

XAFS による Metal-Organic Framework に組み込まれた Pt 錯体の局所構造解析 XAFS Analysis on Local Strucres of Pt Complexes Incorporated within Metal-Organic Framework

<u>堀内 悠</u> Yu Horiuchi

大阪府立大学大学院工学研究科物質·化学系専攻 Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University

本研究では、MOF (Metal-Organic Framework)の有機リンカー部位に構築した白金錯体の局所構 造解析を行った。XAFS 測定を通して、MOF 骨格中のビピリジン(bpy)部位に Pt(bpy)Cl₂錯体が構 築されたことが明らかとなった。この白金錯体固定化 MOF は可視光照射下($\lambda > 550$ nm)、犠牲剤 存在下における光水素生成反応を触媒し、そこでは、構築された白金錯体が光捕集ユニットとし て機能し、その後のチタン酸化物クラスターへの電子移動を通して光触媒作用が発現する色素増 感型の反応機構で反応が進行していることがわかった。

キーワード: 可視光応答型 MOF 光触媒、白金錯体、XAFS 解析

背景と研究目的:

近年のエネルギー・環境問題への関心の高まりを受け、自然エネルギーを利用する新規エネル ギー創生技術の開発が切望されている。特に、クリーンで無尽蔵な太陽エネルギーを利用し、次 世代エネルギー源としての水素を製造可能な光触媒水分解に多大な関心が寄せられている。太陽 エネルギーを効率良く利用し、その工業的応用を実現するには、太陽光の大部分を占める可視光 により反応を駆動できる可視光応答型光触媒の開発が必要である。

一方で、分子レベルでの細孔構造と、それに由来する高比表面積を有する材料を触媒分野に応用する研究が盛んに行われている。中でも、有機リンカーと金属酸化物クラスターから構成され る多孔性材料である Metal-Organic Framework (MOF)が注目されている。MOF は、均一な細孔構造 に由来する高い比表面積を有し、またその細孔サイズ、細孔構造、表面機能を精密にデザインで きる高い設計性を併せ持つ。我々は、この MOF の高い設計性を活かし、有機リンカーと金属酸化 物クラスターとを適切に組み合わせることで、有機リンカーを光捕集ユニットとする新規な可視 光応答型 MOF 光触媒の開発を実現してきた。この MOF は、2-aminoterephthalic acid 有機リンカー が光捕集ユニットとして機能し、その後のチタン酸化物クラスターへの電子移動を通して光触媒 作用が発現する色素増感型の光触媒であり、可視光照射下($\lambda > 500$ nm)、犠牲剤水溶液(TEOA; triethanolamine)からの光水素生成反応を触媒する。この成果の一部は住友化学株式会社との共同で の「学術論文執筆」、「特許出願」により既に報告済みである[1,2]。しかし一方で、有機リンカー の酸化力が弱く、犠牲剤に TEOA しか適用できないといった課題点も浮き彫りとなってきた。

このような背景のもと、光触媒特性の更なる高性能化を目的として、金属錯体型の有機リンカ ーの利用を検討した。その結果、MOF の有機リンカー部位に Pt(bpy)Cl₂ 錯体を構築した新規な MOF (Ti-MOF-Pt(bpy)Cl₂)において、光水素生成反応における犠牲剤適用範囲が拡張するとともに、 有効利用波長が λ > 550 nm にまで拡大することを見出した。このような光触媒系では、白金錯体 の存在状態が可視光吸収特性ひいては光触媒活性を大きく左右する因子であるため、その局所構 造解析は実用的応用を目指す上で極めて重要である。本研究では、XAFS 測定を通して Ti-MOF-Pt(bpy)Cl₂中の白金錯体の存在状態について詳細な解析を行った。

実験:

可視光応答型 MOF 光触媒としての Ti-MOF-Pt(bpy)Cl₂は、ソルボサーマル法によるビ ピリジンユニットを有する MOF (Ti-MOF-bpy)の 合成とその後の Post-synthesis 法による白金錯体の 構築を通した二段階合成法により調製した。まず、 N.N-dimethylformamide (DMF: (CH₃)₂NCHO)および methanol (CH₃OH)の混合溶液に、金属クラスター 源の tetrapropyl orthotitanate (TPOT; Ti(OC₃H₇)₄)、有 機リンカー源の 2,2'-bipyridine-5,5'-dicarboxylic acid (5,5'-dcbpy; C12H8N2O4)を混合、攪拌し、前駆 体溶液を調製した。この溶液を453Kで48hソル ボサーマル条件で反応させることにより、MOF を 結晶化させた。その後、DMF での濾過、洗浄を3 回繰り返した後、室温で一晩乾燥させた。最後に 373 K で1h 真空排気処理を行い、Ti-MOF-bpy を 得た。続いて、Ti-MOF-bpy を K₂PtCl₄ を含む acetone と水の混合溶液中、還流条件下、333 K で 6 h 反応 させることにより、Ti-MOF-bpyのビピリジンユニ ットに白金錯体を固定化した(Ti-MOF-Pt(bpy)Cl₂)。 本 Ti-MOF-Pt(bpy)Cl₂光触媒は、可視光照射下、犠 性剤存在下での光水素生成反応を触媒する。この 際、反応が最大で 550 nm の波長の光照射下で進行 すること(図1)、また、犠牲剤として TEOA の他、 EDTA (ethylenediaminetetraacetic acid) および methanol を利用可能であることを確認した(図 2)。 本光触媒反応においては、助触媒の白金ナノ粒子 を光触媒反応条件下において in situ 担持している。

自金錯体の固定化状態は、XRD、拡散反射 UV-Vis、および Pt L_{III}-edge XAFS 測定により評価 した。XAFS 測定はビームライン BL14B2 にて Lytle 検出器を用いた蛍光法 XAFS により行い、入射 X 線は Si (111)二結晶分光器にて単色化した。データ の解析は Rigaku REX2000 を用いて行い、フーリ

 \boxtimes 1. Action spectrum of Ti-MOF-Pt(bpy)Cl₂ for photocatalytic hydrogen evolution from water containing TEOA and H₂PtCl₆ aq.

 \boxtimes 2. The effect of sacrificial electron donors on the photocatalytic hydrogen evolution from water containing H₂PtCl₆ aq. in the presence of the Ti-MOF-Pt(bpy)Cl₂ photocatalyst.

エ変換は 3 Å⁻¹ < k < 15 Å⁻¹の領域で k^3 -weighted EXAFS oscillation にて行った。

結果および考察:

合成された Ti-MOF-bpy の XRD パターンには、7°以下低角度域に鋭い回折ピークが観察され た。これは規則的な細孔構造に帰属されるピークであると考えられ、MOF の三次元多孔性ネット ワーク構造が形成されたことが明らかとなった。また、このピークは白金錯体の固定化後にも認 められたことから、白金錯体固定化過程において MOF の骨格構造が維持されていることが確認さ れた。加えて、白金錯体固定化後の回折ピークにはメタル白金や酸化白金由来のピークが見られ ないことから、固定化された白金種が凝集せず、分散した状態で存在していることが示唆された。

続いて拡散反射 UV-Vis 測定を行った。Ti-MOF-bpy は 380 nm 以下の紫外光領域にのみ吸収を 示したのに対し、白金錯体固定化後の Ti-MOF-Pt(bpy)Cl₂ では Pt(5,5'-dcbpy)Cl₂ の吸収スペクトル とよく一致する可視光領域(~550 nm)に吸収が認められた。これは、Ti-MOF-bpy のビピリジン部 位に Pt(bpy)Cl₂錯体が構築されたことを示している。

図 3 に Ti-MOF-Pt(bpy)Cl₂およびリファレンスサンプルとしての Pt foil、PtO₂、K₂PtCl₆水溶液、Pt(5,5'-dcbpy)Cl₂の XANES およびフーリエ変換後の EXAFS (FT-EXAFS)スペクトルを示す。 Ti-MOF-Pt(bpy)Cl₂の XANES スペクトルは、リファレンスの Pt foil、PtO₂のものと比較して全く異なっていることから、白金錯体の固定化過程において白金種がメタルや酸化物の状態になってい

☑ 3. Pt L_{III}-edge XANES (left) and FT-EXAFS (right) spectra of Ti-MOF-Pt(bpy)Cl₂, Pt(5,5'-dcbpy)Cl₂, K₂PtCl₂ aq., PtO₂, and Pt foil.

ないことがわかる。また、白金錯体の前駆体である K₂PtCl₆ 水溶液の FT-EXAFS スペクトルには 2.0 Å 付近に Pt-Cl 結合に由来するに一本のピークが観察されたのに対し、Ti-MOF-Pt(bpy)Cl₂のス ペクトルには 1.6、2.0 Å に二本に分裂したピークが観察された。このピークは Pt(5,5'-dcbpy)Cl₂ の FT-EXAFS スペクトルに見られるピークとよく一致することから、MOF の有機リンカーのビピ リジンユニットに目的とする白金錯体が構築されたことが明らかとなった。この白金錯体は光増 感作用を示すことが知られており、また図 1 に示したアクションスペクトルが白金錯体由来の吸 収とよく一致する変化を示したことを考慮すると、MOF 中に構築された Pt(bpy)Cl₂錯体が可視光 吸収ユニットとして機能し、さらに生成した励起電子がチタン酸化物クラスターへと電子移動す ることにより、可視光照射下における光水素生成反応が進行していると考えられる。

参考文献:

[1] Y. Horiuchi, et al., J. Phys. Chem. C 116, 20848 (2012).

[2] M. Matsuoka, et al., JP Patent Tokugan 2012-170362.