2012B1523

BL19B2

# 高温酸化アルミナ皮膜の相変態挙動におよぼす 合金中の Ni および Fe の影響

# The Effect of Ni and Fe in the Substrate on the Phase Transformation of Al<sub>2</sub>O<sub>3</sub> Scale

<u>林 重成</u><sup>a</sup>, 高田 雄都<sup>b</sup>, 佐伯 功<sup>c</sup>, 土井 教史<sup>d</sup>, 山内 啓<sup>e</sup>, 林 篤剛<sup>f</sup>, 米田 鈴枝<sup>b</sup>, 戸嶋 勇太<sup>c</sup>, 南島 晋<sup>g</sup>,

<u>Shigenari Hayashi</u><sup>a</sup>, Yuto Takada<sup>b</sup>, Isao Saeki<sup>c</sup>, Takashi Doi<sup>d</sup>, Akira Yamauchi<sup>e</sup>, Atsutaka Hayashi<sup>f</sup>, Suzue Yoneda<sup>b</sup>, Yuta Tojima<sup>c</sup>, Shin Najima<sup>g</sup>

<sup>a</sup> 北海道大学大学院工学研究科,<sup>b</sup> 北海道大学大学院工学院,<sup>c</sup>室蘭工業大学材料工学科, <sup>d</sup> 新日鉄住金(株),<sup>c</sup> 群馬工業高等専門学校,<sup>f</sup> 新日鉄住金ステンレス(株),<sup>g</sup> 電力中央研究所 <sup>a,b</sup>Hokkaido University, <sup>c</sup>Muroran Institute of Technology, <sup>d</sup>Nippon Steel & Sumitomo Metal, <sup>c</sup>Gunma National College of Tech., <sup>f</sup>Nippon Steel & Sumitomo Metal Stainless, <sup>g</sup>Central Research Inst. of Electric Power Indstury

Fe, Ni の添加割合を変えた Fe-Ni-41.5at%Al 合金表面に大気中で生成する Al<sub>2</sub>O<sub>3</sub>スケールの準安 定相から安定  $\alpha$  相への相変態挙動を、高温ステージと二次元検出器 PILATUS を用いたその場観察 より検討し、Al<sub>2</sub>O<sub>3</sub>スケールの相変態挙動に及ぼす合金中の Fe, Ni の影響について調査した。Fe を 41at%以上含む高濃度 Fe 合金表面には、昇温中に微弱な Fe<sub>2</sub>O<sub>3</sub>のピークが観察され、その後準 安定 Al<sub>2</sub>O<sub>3</sub>の形成無しに  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>が生成した。一方、Fe 濃度の低い合金表面には、Fe<sub>2</sub>O<sub>3</sub>の生成は 認められず、酸化初期に  $\theta$ -Al<sub>2</sub>O<sub>3</sub>が生成した後  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>が生成することがわかった。

キーワード: アルミナスケール、相変態、高温酸化、高温 X 線回折測定

### 背景と研究目的:

著者らは、これまでに Fe 基および Ni 基合金上に形成する Al<sub>2</sub>O<sub>3</sub> スケールの準安定相から安定 a 相への相変態挙動に及ぼす Fe や Ni の影響について、50nm 程度の Fe や Ni のナノコーティングを 施した試料を用いて、種々の酸素分圧下において高温酸化中に形成する Al<sub>2</sub>O<sub>3</sub> スケールの相変態 挙動を、放射光を用いた in-situ 高温 X 線回折測定より検討し、Fe が Al<sub>2</sub>O<sub>3</sub> スケールの相変態を促 進するメカニズムを明らかにするとともに、Ni による相変態の遅延メカニズムを提案している [1-3]。これら一連の研究成果は、高輝度 X 線回折と時間分解能に優れる二次元検出器 PILATUS の組み合わせにより得られた成果であり、これまでの測定より本測定手法を確立することができ た。一方、これまでの研究からは、合金表面にコーティングした Fe や Ni による相変態の促進、 または遅延効果が明らかにはなったが、耐熱合金中に含まれる Fe や Ni が Al<sub>2</sub>O<sub>3</sub> スケールの相変 態挙動に及ぼす影響とそのメカニズムについては、明らかにできていない。

そこで、今回の実験では、合金中の Al 濃度を一定にし、合金中の Fe と Ni の割合を系統的に変 化させた Fe-Ni-41.5at%Al 合金を用いて、合金中の Fe または Ni が Al<sub>2</sub>O<sub>3</sub> スケールの相変態挙動に 及ぼす影響を検討することを目的として、これまでと同様に、高温ステージおよび二次元検出器 PILATUS を用いて昇温期間を含む高温酸化中の散乱法による in-situ 測定を実施した。

本実験における目的は、(1)Fe-Ni-Al 三元系合金上に形成する Al<sub>2</sub>O<sub>3</sub> スケールの相変態挙動を検 討すること。(2)コーティングによる Fe または Ni による相変態促進・遅延効果との類似点、相違 点を検討することである。

#### 実験:

本測定は、ビームライン BL19B2 で実施し、X 線のエネルギーは 12.39 keV(λ=1.0008 Å)を用いた。ビームラインに設置された多軸ゴニオメーター(HUVER 社製)に高温ステージ(ANTON PARR 社製 DHS 1100)を組み合わせ、試料への入射角 α=12.5°とした。回折 X 線は二次元検出器 PILATUS 100K を中心角度 20=25°で設置し、カメラ長を 429.11mm として二次元検出した。測定試料は

Ni-41.5at%Al-0, 15, 24, 33, 41, 50at%Fe および Fe-41.5at%Al 合金を用いた。高温酸化は、試料を高 温ステージの窒化ケイ素製ヒーター上に設置して、大気中、室温から 20 K min<sup>-1</sup> で 1000℃まで昇 温し、その後最大 2 時間の等温酸化を行った。測定は昇温過程より 10s 毎に約 10s 間行った。得 られた二次元画像は、Image J を用いて周方向に数値積分し一次元回折図を得た。また、試料の表 面温度は融点 961℃の純 Ag を試料表面に設置して加熱し、溶融させることにより校正した。

# 結果および考察:



図 2. Ni-低 Fe-Al 合金の大気中、昇温中および 1000℃に おける等温酸化中(lh まで)の X 線回折パターン

られた。一方、図2に示す、合 金中の Fe 濃度が低い合金の回 折ピークからは、Fe<sub>2</sub>O<sub>3</sub>の生成 は認められず、変わって、酸化 の初期より、準安定相である θ-Al<sub>2</sub>O<sub>3</sub>のピークが認められ、そ の後、α-Al<sub>2</sub>O<sub>3</sub>からのピークが出 現する。また、α-Al<sub>2</sub>O<sub>3</sub>のピーク 強度は、合金中の Fe 濃度が減少 するに伴って低下すること、さ らに、α-Al<sub>2</sub>O<sub>3</sub>が形成し始める時 間は、Fe 濃度の増加に伴って早 くなることがわかった。これら の結果から、合金中に Fe を多く 含む合金では、酸化初期に Fe<sub>2</sub>O<sub>3</sub>が生成し、その後 α-Al<sub>2</sub>O<sub>3</sub> が生成するが、合金中の Fe 濃度

図 1.2 に今回の実験で用いた

試料の大気中、昇温及び1000℃

における等温酸化時に得られた

回折パターンを示す。Feを41%

以上含む合金表面には、酸化初

期より α-Al<sub>2</sub>O<sub>3</sub> が形成し、準安

定相からの回折ピークは認めら

れない。図 1(b)に示す 2θ 角, 22°

昇温期間中に Fe<sub>2</sub>O<sub>3</sub> からの微弱

なピークが確認され、そのピー

ク位置は、昇温過程の後期には、 高角度側へとシフトしているこ

とがわかる。図中には示してい

ないが、このような Fe<sub>2</sub>O<sub>3</sub> から

のピークは、合金中に41%以上

の Fe を含む全ての合金で認め

が低下すると、酸化初期には準

付近の拡大図から、酸化初期、

安定相である θ-Al<sub>2</sub>O<sub>3</sub>が形成し、その後 α-Al<sub>2</sub>O<sub>3</sub>が生成することが明らかになった。

図 3 に示す、1 時間等温酸化後、1000<sup>°</sup>Cにおける各合金の X 線回折パターンより、酸化初期に Fe<sub>2</sub>O<sub>3</sub>を生成した高 Fe 含有合金で生成した  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>の回折ピークの半価幅は広く、それは、ピー クが 2 本のピークから構成されているためであることがわかる。同様の  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>のダブルピーク は、Fe をコーティングした試料の in-situ 測定結果から確認されており[2,3]、前述した Fe<sub>2</sub>O<sub>3</sub>から のピークシフトと併せて考察すると、高 Fe 濃度の合金では、酸化初期に Fe<sub>2</sub>O<sub>3</sub>が生成し、これよ り Fe<sub>2</sub>O<sub>3</sub> を固溶した  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> が析出したと考えられる。

一方、図 4 に示す、1 時間酸化後の試料表面に形成した α-Al<sub>2</sub>O<sub>3</sub> スケールの面間隔の合金中の Fe 濃度依存性から、合金中の Fe 濃度の増加に伴って、α-Al<sub>2</sub>O<sub>3</sub>の面間隔が増加していることが分 かる。この面間隔の増加は、 $Al_2O_3$ 中への  $Fe^{3+}$ イオンの固溶によるものと考えられることから、合 金中の Fe は  $Al_2O_3$ スケール中に固溶し、この固溶した  $Fe^{3+}$ イオンが  $\alpha$ - $Al_2O_3$ の相変態挙動に影響 をおよぼしていることが示唆される。



図 3. 1000℃,1時間酸化後に各試料上に形成した 酸化スケールからの回折パターン

図 4. 1000℃, 1 時間酸化後に生成した α-Al<sub>2</sub>O<sub>3</sub> スケールの面間隔の合金 中の Fe 濃度依存性

# まとめと今後の課題:

今回の実験では、高 Fe 濃度合金中では、合金中の Fe が酸化のごく初期に酸化され Fe<sub>2</sub>O<sub>3</sub>を形成することが明らかになった。酸化初期に Fe<sub>2</sub>O<sub>3</sub>が生成した場合には、その Fe<sub>2</sub>O<sub>3</sub>より α-Al<sub>2</sub>O<sub>3</sub>が 生成する。一方、低 Fe 濃度合金では Fe<sub>2</sub>O<sub>3</sub>の生成が明確に確認されなかったが、初期に形成する Al<sub>2</sub>O<sub>3</sub>スケール中の Fe 濃度は、合金の Fe 濃度に依存し、それが相変態挙動に影響することが明ら かになった。この Al<sub>2</sub>O<sub>3</sub>スケール中の Fe イオン(濃度)が Al<sub>2</sub>O<sub>3</sub>スケールの相変態挙動におよぼす 影響については、今回の実験からは明らかにできておらず、今後の詳細な検討が必要である。

## 参考文献:

[1] Y. Kitajima, et al., Oxid. Met., 73, 375 (2010).

[2] S. Hayashi, et al., Mater. Sci. Forum, 696, 63 (2011).

[3] S. Hayashi, et al., Materials and Corrosion, 63, 862 (2012).