X 線回折による L1₀型 FeNi 規則相を含む合金薄膜の構造評価 Analysis on Crystal Structures of L1₀ Type FeNi Films by X-ray Diffraction

<u>水口 将輝</u>^a,田代 敬之^a,小嶋 隆幸^a,高梨 弘毅^a, 小嗣 真人^b,小金澤 智之^b <u>Masaki Mizuguchi</u>^a, Takayuki Tashiro^a, Takayuki Kojima^a, Koki Takanashi^a, Masato Kotsugi^b, Tomoyuki Koganezawa^b

^a東北大学金属材料研究所,^b(公財)高輝度光科学研究センター ^aIMR-Tohoku Univ.,^bJASRI

放射光を用いた X 線回折により、次世代磁気記録材料の一つとして期待される L1₀型規則合金 FeNi 薄膜の結晶構造評価を行った。スパッタリング法と急速加熱法を併用して作製した FeNi 多 層膜の X 線回折スペクトルを測定したところ、Fe および Ni の膜厚を変化させたいずれの薄膜に おいても、L1₀-FeNi の超格子ピークが観測された。また、1 層あたりの膜厚が薄い試料ほど、超 格子回折線の強度が増大する結果となった。これらの結果は、適切な試料設計を行うことにより、 L1₀規則化を促進することができることを示す結果である。

キーワード: L1₀型、FeNi、磁気記録媒体、X線回折、結晶構造、規則合金

背景と研究目的:

近年、高速インターネット通信の普及、デジタルハイビジョン放送の開始などを背景に、取り 扱うデータ量は加速度的に上昇している。その大量データを保存活用するために、高速性やコス トに優れた磁気記録媒体がストレージ機器の主力として研究開発されている。次世代磁気記録材 料の一つとして L10型の FePt および CoPt 規則合金が盛んに研究されているが、Pt は価格が高騰 しており、代替素材の登場が望まれている。我々は、そのようなレアメタルフリーの記録媒体と して、材料が潤沢で安価な Fe と Ni を用いた L10型 FeNi 規則合金の作製を推進してきた。最近、 分子線エピタキシの技術を活用することで、L10型の人工格子を作製するに至った[1, 2, 3]。磁気 記録媒体の機能の一つである磁気異方性は、格子の規則度や格子歪みに強く依存して急激に変化 することが知られている。磁気異方性の起源は一般的にはスピン軌道相互作用によるものであり、 格子状態と磁気特性が密接に関連して生じる。Co と Pt の場合では原子半径には大きな差がある が、FeとNiのそれはほぼ等しく、これが規則化を困難にしている一因と予想される。つまり、 安価で環境に優しい大容量磁気記録媒体を実現させるためには、FeNiの結晶構造をこれまで以上 に詳細に研究する必要がある。そこで、我々は、放射光 XRD を用いて試料の結晶構造を高い精度 で評価することにより、優れた機能性を呈する人工格子の構造特性を明らかにすることを目的と して、研究を進めた。今回は特に、スパッタ法と急速加熱法を併用して作製した FeNi 多層膜の結 晶構造について、放射光 XRD を用いて評価することにより、その構造特性を明らかにすることを 計画した。前回までに FeNi 単相膜において、L10-FeNi の超格子ピークを観測し、その加熱条件依 存性を明らかにしたため、今回は多層膜試料について、より詳細に調べることを試みた。

実験:

試料の作製は、MgO(001)基板上にスパッタ法により Fe および Ni を交互に成膜することにより 行った。Fe および Ni 層の膜厚を 0.3、0.4、1.0 nm と様々に変化させ、総膜厚は、30 nm となるよ うに積層回数を調整した。成膜後、真空中での急速加熱処理(RTA)により規則化を促した。急速加 熱速度は 50°C/s、加熱温度は 350°C とし、加熱時間は 20 時間とした。また、参照試料として、加 熱を行わない試料(as-deposited)も準備した。あらかじめ、これらの薄膜の磁化曲線を測定して磁気 特性を調査済みである。

放射光を用いた X 線回折実験は、BL46XU でアンジュレータ光源からの X 線により行った。多軸 X 線回折計を用い、回折実験を行った。面外および面内配置における X 線回折測定を行い、X

線の入射エネルギーは、6.90 keV とした。測定は全て室温で行った。これらの測定条件は、前回 までの測定条件の最適化の結果を参考にして決定した。

結果および考察:

Fig.1 に、急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀薄膜の、面外 XRD における FeNi(001)超格子 ピーク測定結果を示す。ややブロードなピークを明確に確認することができた。このピークの回 折角度は、L1₀-FeNi(001)超格子ピークの角度に一致しており、多層構造においても L1₀-FeNi 相の 存在を確認した。

Fig.1. 急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀ 薄膜の、面外 XRD における FeNi(001)超格子ピーク測定結果。

Fig.2 に、[Fe 0.3 nm / Ni 0.3 nm]₅₀、[Fe 0.4 nm / Ni 0.4 nm]₃₇、[Fe 1.0 nm / Ni 1.0 nm]₁₅の 3 試料に おける急速加熱処理と as-deposited の面内 XRD 測定結果を示す。as-deposited の試料では、ブロー ドで強度の小さな L1₀-FeNi(110)超格子ピークが一部の試料で確認された。一方、RTA 試料におい ては、いずれの試料においても明確な L1₀-FeNi(110)超格子ピークが確認されたが、1 層あたりの 膜厚が小さな試料ほど強度が強く、L1₀-FeNi 相の生成が促進されることが分かった。今回の実験 をとおして、今後、より規則度の高い L1₀-FeNi 薄膜を作製するための重要な知見が得られた。

今後の課題:

今後は、より最適な作製条件の探索を行い、垂直磁気異方性との相関を明らかにする。また、 多層膜の総膜厚依存性についても調べて行きたい。

参考文献:

- [1] M. Mizuguchi et al., J. Magn. Soc. Jpn., 35, 370, (2011).
- [2] T. Kojima et al., Jpn. J. Appl. Phys., 51, 010204, (2012).
- [3] T. Kojima et al., J. Phys. Cond. Mat., 26, 064207, (2014).