X 線回折による L1₀型 FeNi 規則相を含む合金薄膜の構造評価 Analysis on Crystal Structures of L1₀ Type FeNi Films by X-ray Diffraction

<u>水口 将輝</u>^a, 田代 敬之^a, 高梨 弘毅^a, 小嗣 真人^b, 小金澤 智之^b <u>Masaki Mizuguchi^a</u>, Takayuki Tashiro^a, Koki Takanashi^a, Masato Kotsugi^b, Tomoyuki Koganezawa^b

^a東北大学金属材料研究所,^b(公財)高輝度光科学研究センター ^aIMR-Tohoku Univ.,^bJASRI

放射光を用いた X 線回折により、次世代磁気記録材料の一つとして期待される L1₀型規則合金 FeNi 薄膜の結晶構造評価を行った。スパッタリング法と急速加熱法を併用して作製した FeNi 多 層膜の X 線回折スペクトルを測定したところ、加熱時間を 20 時間とした試料で、明確な L1₀-FeNi の超格子ピークが観測された。また、総膜厚の薄い試料(15 nm)ほど、超格子回折線の強度が増加 する結果となった。これらの結果は、適切な試料設計を行うことにより、L1₀規則化を促進するこ とができることを示す結果である。

キーワード: L1₀型、FeNi、磁気記録媒体、X線回折、結晶構造、規則合金

背景と研究目的:

近年、高速インターネット通信の普及、デジタルハイビジョン放送の開始などを背景に、取り 扱うデータ量は加速度的に上昇している。その大量データを保存活用するために、高速性やコス トに優れた磁気記録媒体がストレージ機器の主力として研究開発されている。次世代磁気記録材 料の一つとして L10型の FePt および CoPt 規則合金が盛んに研究されているが、Pt は価格が高騰 しており、代替素材の登場が望まれている。我々は、そのようなレアメタルフリーの記録媒体と して、材料が潤沢で安価な Fe と Ni を用いた L10型 FeNi 規則合金の作製を推進してきた。最近、 分子線エピタキシの技術を活用することで、L10型の人工格子を作製するに至った[1-3]。磁気記録 媒体の機能の一つである磁気異方性は、格子の規則度や格子歪みに強く依存して急激に変化する ことが知られている。磁気異方性の起源は一般的にはスピン軌道相互作用によるものであり、格 子状態と磁気特性が密接に関連して生じる。CoとPtの場合では原子半径には大きな差があるが、 Fe と Ni のそれはほぼ等しく、これが規則化を困難にしている一因と予想される。つまり、安価 で環境に優しい大容量磁気記録媒体を実現させるためには、FeNiの結晶構造をこれまで以上に詳 細に研究する必要がある。そこで、我々は、放射光 XRD を用いて試料の結晶構造を高い精度で評 価することにより、優れた機能性を呈する人工格子の構造特性を明らかにすることを目的として、 研究を進めた。今回は特に、スパッタ法と急速加熱法を併用して作製した FeNi 多層膜の結晶構造 について、放射光 XRD を用いて評価することにより、その構造特性を明らかにすることを計画し た。前回までに多層膜の各層の厚さの最適化を完了しており、今回は総膜厚や急速熱処理条件が 規則化に与える影響について、より詳細に調べることを試みた。

実験:

試料の作製は、MgO(001)基板上にスパッタ法により Fe および Ni を交互に成膜することにより 行った。Fe および Ni 層の膜厚をそれぞれ 0.3 nm とし、総膜厚は、15 あるいは 30 nm とした。成 膜後、真空中での急速加熱処理(RTA)により規則化を促した。急速加熱速度は 50 ℃/s、加熱温度 は 300 および 350℃ とし、加熱時間は 10 および 20 時間とした。あらかじめ、これらの薄膜の磁 化曲線を測定して磁気特性を調査済みである。

放射光を用いた X 線回折実験は、BL46XU でアンジュレータ光源からの X 線により行った。多軸 X 線回折計を用い、回折実験を行った。測定には HUBER 社多軸回折計を用い、検出器には Nal シンチレーションカウンタを用いた。ビーム形状は、0.5 mm(高さ)×0.05 mm(幅)であり、受光側は ダブルスリット光学系を用いた。面内配置における X 線回折測定を行い、X 線の入射エネルギー は、6.90 keV とした。測定は全て室温で行った。これらの測定条件は、前回までの測定条件の最

適化の結果を参考にして決定した。

結果および考察:

Fig.1 に、様々な条件で急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀多層膜の、面内 XRD における 測定結果を示す。加熱時間が長い 20 時間の試料で FeNi(110)超格子ピークを明確に確認すること ができた。また、同じ 20 時間の加熱試料で比較すると、300°C 加熱の試料の方が、350°C 加熱の 試料より、超格子ピークの強度が若干強いことが分かった。

Fig.1. 様々な条件で急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀多層膜の、 面内 XRD における測定結果。

Fig.2 に、急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀多層膜および[Fe 0.3 nm / Ni 0.3 nm]₂₅多層膜 の面内 XRD 測定結果を示す。参照試料として、熱処理をしていない多層膜試料(as-multi 15 nm)お よび同時蒸着で急速加熱処理した試料の測定結果も示している。多層膜試料における超格子ピー ク強度を比較すると、総膜厚の薄い試料(15 nm)ほど、明確な L1₀-FeNi(110)超格子ピークが確認さ れ、L1₀-FeNi 相の生成が促進されたことが分かった。これは、総膜厚が薄いほど、RTA の効果が 大きいためと考えられる。また、同時蒸着の試料よりピーク強度は大きいことが分かった。今回 の実験から、今後、より規則度の高い L1₀-FeNi 薄膜を作製するための重要な知見が得られた。

Fig.2. 急速加熱処理した[Fe 0.3 nm / Ni 0.3 nm]₅₀多層膜(multi 30 nm)および [Fe 0.3 nm / Ni 0.3 nm]₂₅多層膜(multi 15 nm)の面内 XRD 測定結果。

今後の課題:

今後は、より最適な作製条件の探索を行い、垂直磁気異方性との相関を明らかにする。また、 FeNiと非磁性材料からなるグラニュラー構造の特性についても調べて行きたい。

参考文献:

- [1] M. Mizuguchi et al., J. Magn. Soc. Jpn., 35, 370, (2011).
- [2] T. Kojima et al., Jpn. J. Appl. Phys., 51, 010204, (2012).
- [3] T. Kojima et al., J. Phys. Cond. Mat., 26, 064207, (2014).