2016A1498

BL09XU

Li(Ni_{0.8}Mn_{0.1}Co_{0.1})O₂の⁶¹Ni メスバウアー分光学的研究 Synchrotron Radiation-based ⁶¹Ni Mössbauer Spectroscopic Study of Li(Ni_{0.8}Mn_{0.1}Co_{0.1})O₂

<u>世木 隆</u> Takashi Segi

(株)コベルコ科研 KOBELCO RESEARCH INSTITUTE, INC.,

Li イオン二次電池正極材料である Li (Ni_{0.8}Mn_{0.1}Co_{0.1}) O₂ の放射光 ⁶¹Ni Mössbauer 分光法を行い、 3 種類の Ni の超微細構造を解析した。遷移金属サイトは低スピン Ni³⁺と約 11T の内部磁場を有す る高スピン Ni²⁺が、Li イオンサイトには低スピン Ni²⁺がそれぞれ 76:12:12 の比率で含むと解釈出 来た。スペクトル形状は対称的で Jahn-Teller 歪みの寄与は小さいように見えるが、これは内部磁 場と電場勾配テンソルが非並行である事が原因と推定された。

キーワード: ⁶¹Ni、Li(Ni_{0.8}Mn_{0.1}Co_{0.1})O₂、リチウムイオン二次電池、メスバウアー

背景と研究目的:

Li イオン二次電池正極材は LiCoO₂を始め様々な材料が用いられているが、酸化還元反応に Ni が関わる Li (Ni_{1/3}Mn_{1/3}Co_{1/3}) O₂ (NMC) は現在多くの分野で用いられている。最近、NMC を改良し た新たな正極材料として Li (Ni_{0.8}Mn_{0.1}Co_{0.1}) O₂ (NMC811) 材料が注目されている。Ni 量を増大させ る事により充電容量が増大しているが、サイクル特性等の改良も必要で、電荷補償を担う Ni イオ ンの詳しい挙動の理解が求められている。放電状態の NMC811 の Ni イオンは、(a) 遷移金属サイ トを占有した Ni³⁺ (*S*=1/2, *d*⁷) が主成分であり、次いで、(b) (a) と同一の結晶学的等価位置を占有 した Ni²⁺ (*S*=1, *d*⁸) と (c) カチオンミキシングとして知られる Li サイトを占有した Ni²⁺が小数共存 していると言われている[1]。この様に複雑な Ni イオンの振る舞いを正しく解釈する為にはサイト 選択性を持った Ni-61 Mössbauer 分光法が最適である。

短寿命核種である ⁶¹Ni-Mössbauer 分光法を行うには放射光利用が有効であるので、本研究では NMC811 の ⁶¹Ni-Mössbauer 分光測定を初めて行い、そのスペクトルの解析を試みた。

実験:

測定用試料は Li (Ni_{0.8}Mn_{0.1}Co_{0.1}) O₂ 粉末である。予め XRD パターンを取得した結果、その回折 パターンは層状岩塩構造である事を確認した。また、その格子定数 (*a*, *c* それぞれ 0.2893 nm と 1.4240 nm) は NMC811 の文献値[2] (*a*, *c* それぞれ 0.2894 nm と 1.4240 nm) 近い。また、リートベル ド法によりカチオンミキシング量を求めた結果、遷移金属サイトと Li サイトを占有した遷移金属 イオンの比率は 83: 17 と見積もられた。

⁶¹Nil の放射光 Mössbauer 分光法は BL09XU で実施した。試料温度は 6 K とした。詳しい実験条 件は、文献[3, 4, 5]へ示した通りである。

結果および考察:

図1はNMC811の⁶¹Ni Mössbauer スペクトルを示した。横軸はドップラー速度を、縦軸はカウント値にそれぞれ対応する。NMC811はLiNiO₂の一部のNiイオンをMn およびCoイオンへ置換した構造である事を考えると、LiNiO₂に対する先行研究[6]と同様の解析モデルでその超微細構造が解釈できると考えられる。しかしながら、NMC811のスペクトル形状が横軸0mms⁻¹に対し対称的である点から、以下の様に考察した。例えば、NMC811の主成分であるNiは、O原子により八面体的に取り囲まれたNi³⁺(*S*=1/2, d^7)イオンである。それ故にJahn-Teller 歪みにより電場勾配テンソル V_{zz}≠0になる為に、スペクトル形状は非対称になる筈である。そこで、ここでは内部磁

場と Vzz が非並行であると仮定し、図2へ示した量子化軸の角度βをフィッティングパラメータと して追加した。

また、アイソマーシフトと半値幅はそれぞれ 0 mms⁻¹と自然線幅である 0.8 mms⁻¹とし、文献[6] を再現する様にサブスペクトル(b)と(c)の面積比は等しくなるように固定した。これによる解析 結果を表1へ示した。

図1 NMC811の⁶¹Ni 放射光 Mössbauer スペクトル(6K)

	表1 得られた Mössbauer パラメータ			
	$B_{int.}(T)$	$V_{zz}(10^{21} \text{ mV}^{-2})$	β (deg.)	Area ratio (%)
(a)	4	-25	65	76
(b)	11	-	-	12
(c)	-	-	-	12

表1へ解析結果を示した。サブスペクトル(a)は Jahn-Teller 歪みを伴う低スピン Ni³⁺成分として解釈できる。LiNiO₂の Ni 磁気モーメントは c 軸へ配向している事が報告されているが[7]、この知見を用いると図3へ示した様に V_{zz}は Ni イオンを取り囲む O 原子の方向へ配向している可能性が挙げられる。V_{zz}の符号と大きさは、充電状態の NMC から得られた低スピン Ni³⁺成分とほぼ同等であった[3]。

サブスペクトル(c)の面積強度はLiサイトを占有したNi量を反映する。⁶¹Ni Mössbauer分光法 による遷移金属サイトとLiサイトを占有したサブスペクトルの面積比は88:12 であり、この値は XRD リートベルド法による解析結果と近い。そしてサブスペクトル(b)と(c)の超微細構造は、 先行研究[6]の解析結果と良く一致し、LiNiO₂と NMC811 における Ni の電子状態は近いと考えら れる。

今後は充電状態が異なる試料を測定する事により、Niの酸化還元機構をより詳細に明らかにする 計画である。

参考文献 :

- J. M. Wikberg, M. Dahbi, I. Saadoune, T. Gustafsson, K. Edström and P. Svedlindh, Journal of Applied Physics, 108, 083909 (2010).
- [2] J. Li, L. E. Downie, L. Ma, W. Qui and J. R. Dahn, Journal of The Electrochemical Society, 162, A1401, (2015).
- [3] T. Segi, R. Masuda, Y. Kobayashi, T. Tsubota, Y. Yoda and M. Seto, Hyperfine Interact, 237, 7 (2016).
- [4] M. Seto, R. Masuda, S. Higashitaniguchi, S. Kitao, Y. Kobayashi, C. Inaba, T. Mitsui, and Y. Yoda, Physical Review Letter, 102, 217602 (2009).
- [5] R. Masuda, Y. Kobayashi, S. Kitao, M. Kurokuzu, M. Saito, Y. Yoda, T. Mitsui, F. Iga and M. Seto, Applied Physics Letters, **104**, 082411 (2014).
- [6] V. Ksenofontov, S. Reiman, D. Walcher, Y. Garcia, N. Doroshenko and P. Gütlich, Hyperfine Interact, 139/140, 107 (2002).
- [7] J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, P. L. Russo, D. Andreica, A. Amato, K. Ariyoshi and T. Ohzuku, Physical Review, B78, 144412 (2008).

謝辞:

本研究は、京都大学 瀬戸 誠先生、小林 康浩先生、増田 亮先生、そして高輝度光科学研究 センター 依田 芳卓様のご協力を得て実施いたしました。御礼申し上げます。