2013B1002, 2014A1002, 2014B1014

BL40XU

マイクロX線回折によるリチウムイオン電池正極活物質の 単粒子構造解析

Single Particle Structural Characterization of Cathode Materials for Lithium Ion Battery by Micro X-ray Diffraction

福満 仁志, 寺田 健二, 大森 美穂, <u>末広 省吾</u> Hitoshi Fukumitsu, Kenji Terada, Miho Omori, <u>Shogo Suehiro</u>

(株) 住化分析センター 技術開発センター Sumika Chemical Analysis Service, Ltd. Technology Innovation Center

リチウムイオン 2 次電池をはじめとした高性能蓄電池の実現を目指し、新規活物質の開発が盛んにおこなわれているが、そのためには活物質の本質的な特性を理解することが重要である。そこで電極活物質単粒子のその場(*in situ*)X線回折(XRD)法開発を目指し、マイクロX線ビームを用いた XRD 測定を実施した。実験では専用の充放電セルを作製し、正極活物質に LiCoO2 単粒子を用いたセルが電池として動作することを確認した。さらに、単粒子の XRD 測定を行い、電池として電解液中に浸漬した状態でも LiCoO2 単粒子の回折パターンを得ることができた。

キーワード: リチウムイオン2次電池、活物質、単粒子、XRD

背景と研究目的:

高性能蓄電池の実現を目指し、電極材料である新規活物質の開発が盛んにおこなわれているが、 そのためには活物質の本質的な特性を理解することが重要である。バインダーや導電助剤、電極 シート内の空隙など活物質本来の性能とは異なる要因により電子移動やLiイオン拡散が制御され ている系ではその達成は難しい。そのため、活物質単粒子を用いた電池特性や構造変化に関する 研究がおこなわれている。例えば、光学顕微鏡と集電プローブを用いた単粒子充放電システムに よる充放電挙動の確認^[1,2]やラマン分光法による活物質単粒子の充放電に伴う構造変化の確認^[3]等 である。また、近年 ZrO₂や Al₂O₃等によって活物質表面を被覆することで電池性能が向上すると いうことが報告されている^[4]。しかしながら、表面被覆が電池特性の向上に本質的にどう寄与し ているのかという被覆効果メカニズムは未解明である。そのため、活物質表面被覆による蓄電池 の特性向上は、経験則に基づいた方法がほとんどであり、現状では分析測定による明確な指針が 存在していない。活物質のさらなる性能向上を目指すためには表面被覆の効果を詳細に解析する 手法が必要である。そこで電極活物質単粒子のその場(*in situ*)X線回折法開発を目指し、専用充放 電セルの設計ならびに放射光マイクロX線ビームを用いた XRD 測定検討を実施した。

実験:

(1) 単粒子 in situ XRD 測定用セルの作製

グローブボックス内(不活性雰囲気下)で、北斗電工製のマイクロ電極(Pt、 φ10 μm)先端にマイ クロサポート社製のマイクロマニピュレータシステムを用いて粒径 10 - 20 μm のコバルト酸リチ ウム(LiCoO₂)粒子一粒を載せた。載せた後、マイクロマニピュレータシステムのタングステンプ ローブで活物質を押さえ、導電助剤とバインダー樹脂の混合物(1wt%AB+1wt%PVDF/NMP 溶液) をマイクロインジェクターで滴下した。その後、50°C で 3h 程度真空乾燥し、図1に示すセル下 側に活物質を固定したマイクロ電極をセットする。負極は、Ni 線の先端に Li 金属を固定したもの を用意し、図1のセル上部のセラミックスフィルタ付きガラスキャピラリにセットし、マイクロ メータでマイクロ電極側に接近させる。最後に電解液として 1M LiPF₆ / EC:DEC (1:1)をガラスキ ャピラリに注入し、密閉したものを図1の単粒子セルとして供した。セルの窓材には、X 線の透 過性とガス雰囲気の遮断性に優れた高バリア性樹脂フィルム(シクロオレフィンポリマー (COP) 樹脂)を用いた。

SPring-8 利用研究成果集

は CCD 検出器(リガク

製 Saturn724) を用い、

カメラ長は 34.05 mm とした。設定方法は、既知物質(ルビー)の単結晶を測定し、その格子定数の

図1 単粒子 in situ XRD 測定用セルの概要

4.0

3.5

精密化パラメータに基づいて調整した。露光時間は5sとして回折X線を検出した。

結果および考察:

まず、作製した単粒子測定用電池セルの動作確認を 行った。図2に測定セルを用いた LiCoO2 単粒子の充 放電曲線を示す。電流値は 2 nA、充電電圧および放 電電圧はそれぞれ 4.2 V および 2.5 V とした。充電容 量、放電容量はそれぞれ 0.52 nAh、0.29 nAh であった。 充放電効率はやや低いものの、作製したセルが電池と して動作することが確認できた。

次にセル内に固定した約 φ15μm の活物質単粒子中 心部に X線を照射し、XRD 測定を行った。得られた

X線回折パタ ーンを図3に示 す。測定は LiCoO₂粒子が 電解液に含浸 した状態で行 った。得られた 図 3(a)のデバ イシェラー環

図3 電解液中の LiCoO₂ 単粒子の XRD パターン

において、LiCoO2由来の回折ピークが比較的明瞭に観測された矢印方向の2θ=5-40°範囲から図 3(b)の1次元化した XRD パターンを抽出した。図3(b)の●印で示したピークがLiCoO2に由来す るピークで、▲印で示したピークは白金線由来である。このことから電解液中においてもLiCoO2 単粒子の回折パターンを得ることが可能であることが確認できた。

図4 Z位置を変えながら測定した LiCoO2 単粒子の回折パターン

折強度が高い 部分を赤で示 す。Z位置の数

値が小さい程高い位置にあることを示している。Z位置がおよそ 15-30 μm の位置では LiCoO₂の 回折パターンが観測されたが、LiCoO₂の中心付近から下側の測定位置ではマイクロ電極由来の Pt の回折パターンが観測された。これは、測定中における試料ドリフトの影響ではないかと推察し たが、断定には至らなかった。LiCoO₂由来の回折ピークが観測された 15 μm の範囲の中で各ピー クの強度が高さによって変化していた。これは一つの粒子の中で異なる方向を向いた結晶子が存 在しているためである。このことは単粒子の中で場所を区別して XRD 測定を行うことに成功した ことを示している。

以上より、我々はリチウムイオン電池の正極材料単粒子を充放電することのできるセルを開発 し、そのセルを用いて電解液中でマイクロビーム XRD 測定を行うことに成功した。XRD 測定を 充放電しながら行うことで、活物質単粒子の結晶構造の充放電中におけるその場解析が可能にな る。従って、本技術により電極材料の持つ特性と構造に関する評価や活物質自体の劣化メカニズ ムの解析を、電極シートを作製するこれまでの手法^[6]とは異なるアプローチで検討できると考え られる。

今後の課題:

電極活物質単粒子のその場(*in situ*)X線回折法開発を目指し、専用充放電セルの設計ならびに放射光マイクロX線ビームを用いたXRD測定検討を実施した。その結果、正極活物質としてLiCoO2粒子を使用した単粒子測定用電池セルの作製と充放電に成功し、X線を活物質に照射する位置を変えながらXRD測定する事ができた。LiCoO2由来の回折ピークが検出された約15µmの範囲で、異なる方向を向いた結晶子に由来する強度の変化が認められた。以上の結果より、マイクロX線のビーム径を活物質のサイズよりも小さくすることで、一つの活物質粒子の中で場所を区別してXRD測定できることが判明したが、充放電中の活物質のドリフトのため、*in situ*回折パターンを得る事までには至らなかった。活物質が安定した状態で測定することが出来れば、近年盛んに研究されているZrO2やAlO2による表面被覆による活物質性能の向上について、そのメカニズムを解明し、さらなる高性能材料開発を支援する事が出来ると思われる。

謝辞:

本研究は NEDO「次世代蓄電池材料評価技術開発」の助成を受けて行われました。

参考文献:

- [1] I.Uchida et al., J.Power.Sources. 68, 139 (1997).
- [2] K. Dokko et al., J. Power Sources. 189, 783 (2009).
- [3] K. Dokko et al., J. Phys. Chem. B. 107, 12549 (2003).
- [4] B. J. Hwang et al., J. Power Sources, 195, 4255 (2010).
- [5] N. Yasuda et al., J. Synchrotron Red., 16, 352 (2009).
- [6] T. Ohzuku, A. Ueda, J. Electrochem. Soc., 141, 2972 (1994).

©JASRI

(Received: February 14, 2017; Early edition: May 25, 2017; Accepted: July 18, 2017; Published: August 17, 2017)