BL19B2

延伸時のナノシリカ充填シリコーンゴムの階層構造解析 Analysis on Hierarchical Structure of Nano-Sillica Filled Poly(dimethylsiloxane) during Uniaxial Deformation

<u>福谷(野田)実希</u>, 妹尾政宣 <u>Miki Noda Fukuya</u>, Kazunobu Senoo

住友ベークライト株式会社 Sumitomo Bakelite Co., Ltd.

優れた化学的安定性を有するシリコーンゴムは、様々な用途で使用されているが、引裂き強度の弱さが課題である。我々は補強材としてナノシリカを充填することにより、高引裂き強度を備えたシリコーンゴムを開発している。本研究では、延伸過程における構造変化を極小角 X 線散乱および小角 X 線散乱測定により評価した結果、高次構造の変形が観察された。

キーワード: ナノシリカ、シリコーンゴム、USAXS

背景と研究目的:

シリコーンゴムは耐熱、耐寒、化学的安定性に優れ、離型性や電気絶縁性、気体透過性、透明 性が良好であることから医療機器用途などの幅広いアプリケーションで活用されている[1]。一 方、多様な用途が期待されるシリコーンゴムの課題として、引裂強度の弱さが挙げられる。通 常、シリコーンゴムの引裂強度は室温下で10 N/mm以下であり、破断強度も3 MPa と低い。そ のため、補強材としてシリカが使用されているが、その延伸による階層構造の様子を観察した例 は少ない。ごく最近に Schneider らが延伸に伴うシリカの異方性について検討している。そこで は3 倍程度の延伸においてシリカの凝集構造が延伸方向に異方性を示す事を明らかにした[2]。 我々はポリジメチルシロキサン(PDMS)にナノサイズの表面処理されたシリカフィラーを充填

マスペロホッシンテアルシロマッシ(FDMS)に することで、高引裂強度を備えたシリコー ンゴムを開発している。我々の開発品は引 裂かれ箇所が大きく変形しながら白濁し、 糸を引くがごとく引裂かれるのに対し、通 常のシリコーンゴムはカッターナイフで切 断したように直線的に引裂かれる点におい て大きく異なる。

そこで本研究では、ナノシリカによる高 引裂強度の発現メカニズム解明のため、ナ ノシリカ充填 PDMS を7倍程度まで延伸さ せながら極小角 X 線散乱測定(USAXS)およ び小角 X 線散乱測定(SAXS)を実施し、ナノ シリカ凝集体の階層構造を検討した。

図1 試料周りのセットアップ

実験:

表面処理済ナノシリカ(一次粒子径 7 nm)を 充填した PDMS (充填率 0、34.1 wt%)はニーダ ーにて混練し、170℃で 10 分間静置すること により一次架橋した後、200℃ で 4 時間加熱 することで二次架橋させた。架橋させたシー トを周長 50 mm、幅 1.5 mm のリング状に切断 したものを試料とした。USAXS 測定は BL19

B2、SAXS 測定は BL03XU で実施した。USAXS 測定時の試料周りのセットアップを図 1、2 に示した。リング状試料を滑車 4 個に引っかけることにより延伸時の X 線照射位置を一定に保った。 また、各測定の条件を表1に示した。カメラ長はコラーゲンにより決定した。

	Beamline	Detector	Wave	Camera	Beam Size (mm)
			Length (Å)	Length (m)	スリットサイズ
USAXS	BL19B2	PILATUS 2M	0.689	41.82	h: 0.1, v: 0.1
SAXS	BL03XU	イメージインテンシファイ	1.00	4.273	h: 0.3, v: 0.3
		ア付き CCD			

表 1 USAXS、SAXS の測定条件

なお当初の計画では、試料水準として架橋密度5種類とナノシリカ充填率3種類の合計15種類 について測定する予定であった。しかし、装置の設置や試料位置とビーム位置の調整に時間がか かったことに加えて、図2に示した延伸機滑車部分の不具合が生じたため、当初の計画を変更せ ざるを得なかった。本報告書では測定が実施できたシリカ充填の有無に関する結果を述べる。

結果および考察:

図3に未延伸時のPDMS および34.1 wt%ナノシリ カを添加した PDMS の延伸方向(SD)と平行(//)な方 向の強度プロファイルを示す。PDMS に比較して34.1 wt% ナノシリカ添加 PDMS の散乱強度は3 桁程度大 きくなった。これより34.1 wt%ナノシリカ添加 PDMS の増加した散乱強度はマトリックスである PDMS と ナノシリカとの電子密度差に起因していることが分 かった。

図4に各延伸倍率(λ)における34.1 wt%ナノシリカ 添加 PDMS の USAXS および SAXS 測定の二次元画 像を示した。全ての延伸倍率でSD 方向にバタフライ パターンが観察されたことから、SD 方向に電子密度 揺らぎが存在していることが分かった。

バタフライパターンの子午線方向と赤道方向±20°の 範囲でセクター平均を行うことにより、各延伸倍率に おける PDMS および 34.1 wt%ナノシリカ添加 PDMS

図 4 各延伸倍率における USAXS、SAXS 測定の二次元画像

図 5 各延伸倍率における PDMS および 34.1 wt%ナノシリカ添加 PDMS の強度プロファイル

の SD_Iおよび SD₁の強度プロファイルを得た(図 5)。SD₁については、USAXS 測定で試料のエッジ からの散乱に起因するストリークが観察されたため、SAXS 測定の結果のみをプロットした。また、SD_Iの USAXS 領域では、PDMS による散乱と空気散乱が重なるために、特徴的な散乱情報は 得られなかった。34.1 wt%ナノシリカ添加 PDMS は未添加 PDMS に比較して λ =5.8 以上で USAXS 領域(*q*=0.1 nm⁻¹ 以下)の散乱強度が立ち上がり、SD_Iの方が SD₁よりも顕著な散乱強度の増大が観察された。一方、SD_Iおよび SD₁ともに *q*=0.08 nm⁻¹以上で散乱強度がほとんど変化していないことが観察された。

以上のことから、本研究に用いられたナノシリカにより補強された PDMS は、延伸により SD_I 方向の密度揺らぎの顕著な増大が確認され、延伸というマクロな変形により、ナノシリカと PDMS からなる高次構造が変形していることが示唆された。

今後の課題:

観察された延伸による散乱強度の増大はナノシリカ凝集体の構造変化あるいは PDMS とフィラー間で生じる密度揺らぎの変化などが考えられる。今後、中性子散乱測定の結果を考慮に入れることにより、密度揺らぎの詳細を検討する。加えて、より広角側の領域を測定することにより表面フラクタルを検討し、階層的な構造を明らかにする。

参考文献:

[1] R. G. Jones, W. Ando, J. Chojnowski, eds. "Silicon-Containing Polymers: The Science and

Technology of Their Synthesis and Applications", Edited by Springer (2001). [2] G. J. Schneider, D. Goritz, *J. Chem. Phys.*, **133**, 024903 (2010).

©JASRI

(Received: May 27, 2017; Accepted: December 18, 2017; Published: January 25, 2018)